A marriage made in torsional space: using GALAHAD models to drive pharmacophore multiplet searches
نویسندگان
چکیده
Pharmacophore multiplets are useful tools for 3D database searching, with the queries used ordinarily being derived from ensembles of random conformations of active ligands. It seems reasonable to expect that their usefulness can be augmented by instead using queries derived from single ligand conformations obtained from aligned ligands. Comparisons of pharmacophore multiplet searching using random conformations with multiplet searching using single conformations derived from GALAHAD (a genetic algorithm with linear assignment for hypermolecular alignment of datasets) models do indeed show that, while query hypotheses based on random conformations are quite effective, hypotheses based on aligned conformations do a better job of discriminating between active and inactive compounds. In particular, the hypothesis created from a neuraminidase inhibitor model was more similar to half of 18 known actives than all but 0.2% of the compounds in a structurally diverse subset of the World Drug Index. Similarly, a model developed from five angiotensin II antagonists yielded hypotheses that placed 65 known antagonists within the top 0.1-1% of decoy databases. The differences in discriminating power ranged from 2 to 20-fold, depending on the protein target and the type of pharmacophore multiplet used.
منابع مشابه
Search for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کاملSearch for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کاملA Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors
B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atom...
متن کاملTorsional Waves in Prestressed Fiber Reinforced Medium Subjected to Magnetic Field
The propagation of torsional waves in a prestressed fiber-reinforced half-space under the effect of magnetic field and gravity has been discussed. The problem has been solved analytically using Whittaker function to obtain the exact solution frequency equations. Numerical results for stress, gravity and magnetic field are given and illustrated graphically. Comparisons are made with the results ...
متن کامل3D QSAR Studies, Pharmacophore Modeling and Virtual Screening on a Series of Steroidal Aromatase Inhibitors
Aromatase inhibitors are the most important targets in treatment of estrogen-dependent cancers. In order to search for potent steroidal aromatase inhibitors (SAIs) with lower side effects and overcome cellular resistance, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of SAIs to build 3D QSAR models. The rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computer-aided molecular design
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2006